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A method of systematically enumerating homogeneous (i.e. symmetry-related)

packings of equal cylinders is developed. 19 three-way packings with axes

parallel to h100i and 40 four-way packings with axes parallel to h111i are

described. Cubic 6-, 12- and 24-way packings are possible and examples are

given with axes parallel to h210i and h421i.

1. Introduction

Homogeneous cylinder packings are periodic structures of

equal in®nite cylinders in contact with their neighbors, and all

related by symmetry. We use the term `revisited' in our title

because an earlier paper with the title Cubic cylinder packings

(O'Keeffe, 1992) is now known to be incomplete (O'Keeffe et

al., 2001). The interest in such structures, which often have

remarkable aesthetic appeal (e.g. Holden, 1971; Ogawa et al.,

1996), arises for a number of reasons. For example, they serve

as the basis of periodic structures of ®ber-reinforced compo-

site materials (Rosen & Shu, 1971; Ogawa et al., 1995; Park-

house & Kelly, 1998). They are also of importance in

descriptive crystal chemistry (O'Keeffe & Andersson, 1977;

O'Keeffe, 1992; Lidin et al., 1995; Sutorik et al., 2000), in the

characterization of pore structure in porous materials

(Hansen, 1993), and with regard to the arrangement of

disclination lattices in the structures of `blue phases' of

cholesteric liquid crystals (Meiboom et al., 1983).

Some of us (see e.g. Eddaoudi et al., 2001) are concerned

with the design of structures assembled from SBUs (secondary

building units). To date, most structures have been assembled

from zero-dimensional (®nite) SBUs, but attention is now

being given to the design and assembly of in®nite rod SBUs. It

is our thesis (O'Keeffe et al., 2000) that homogeneous struc-

tures form the basis for the majority of self-assembled crys-

talline materials, so it is of considerable interest to know the

basic homogeneous structures available. We remark in this

connection that the importance of sphere packings in crystal

chemistry is commonplace; we expect that cylinder packings

will eventually come to play a similar, if subordinate, role. We

also expect such structures to be important in the description

of ordered self-organizing materials such as polymeric mate-

rials (Muthukumar et al., 1997).

In all homogeneous packings described to date, the number

of different directions of cylinder axes has been limited to

four, but there is considerable interest in packings with more

directions (Christensen, 1987; Ogawa et al., 1995) and, for this

and for other reasons, quasiperiodic structures based on

icosahedral symmetry have been investigated (Ogawa, 1994;

Hizume, 1994, 1996; Parkhouse & Kelly, 1998; Duneau &

Audier, 1999; Audier & Duneau, 2000). In this paper we

describe, we believe for the ®rst time, 6-, 12- and 24-way

homogeneous cubic packings.

We start by describing a method for identifying cubic

packings of cylinders with axes in an arbitrary set of

symmetry-related directions huvwi. We give what we believe is

a complete list of homogeneous h100i (three-way) and h111i
(four-way) packings and their symmetries and coordinates;

again a number of these have not been described before. The

simplest 6- and 12-way packings are based on h210i and

several examples are presented. The simplest 24-way packing

appears to be that based on h421i and the three relatively high

density structures are also described.

2. Determination of coordinates for cylinder packings

We write a space-group operation in the usual way as a Seitz

symbol (W|w), where W is the rotation part and w is the

translation part. The coordinates of a point are the column

vector x = (x=y=z), and the direction of a line [uvw] is the

direction of the vector ua + vb + wc. We write u for the column

vector (u=v=w). Any line is then speci®ed by a point x0 =

(x0=y0=z0) and u0 = (u0=v0=w0). Explicitly, the equations of the

line are

�xÿ x0�=u0 � �yÿ y0�=v0 � �zÿ z0�=w0: �1�
A symmetry operation (Wi|wi) of the space group maps x0, u0

to xi, ui where

xi � Wix0 � wi; ui � Wiu0: �2�
In the case of cubic structures, we can always choose a

reference direction such that w0 6� 0 so that the line intersects

the plane z = 0, i.e. z0 = 0. Thus any cubic cylinder packing is

speci®ed by giving the space group, three integers u0, v0 and

w0, specifying the axis direction, and two parameters x0 and y0,

specifying the intersection with z = 0.

The shortest distance between cylinders is readily calcu-

lated as da, where a is the cubic unit-cell edge (see Appendix

A). The density of the packing, de®ned as the fraction of space

occupied by the cylinders, is
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� � n��u2
0 � v2

0 � w2
0�1=2

d 2=4; �3�

where n is the number of cylinders per unit cell in the set

x0, y0, 0. To ®nd cylinder packings, x0 and y0 are varied

systematically throughout the unit cell and � is calculated. If

two cylinders intersect, the density is zero. Likewise, as x0 and

y0 approach special values where two or more parallel cylin-

ders merge into one, the density approaches zero, until at the

special value (cylinders merging) it may again adopt a ®nite

value. The result is that a plot of density in the xy plane has

regions of non-zero density separated from each other by lines

of zero density, as illustrated in Fig. 1 for h111i cylinders in

space group Ia�3d. Inspection shows that invariably each non-

zero density region has one clearly de®ned maximum and

decreases monotonically to zero away from the maximum (i.e.

there were no saddle points; indeed in every case examined

the maximum was a cusp with positive curvature at the

maximum). Accordingly, we assume that each region

surrounded by zero density (these are delta functions for

invariant packings) corresponded to just one type of packing

and that the stable con®guration with maximum kinds of

contact was that of the maximum density. With one exception,

identi®ed below, the con®guration so determined corresponds

to a stable packing in which each cylinder is held immobile by

its neighbors.

In practice, the calculation proceeds very simply. From one

axis at x0, y0, 0 [uvw], the space-group operations are used to

generate the rest of the axes in the unit cell. The distance from

one of these to the rest is then calculated. If a zero distance is

found then the density is zero; otherwise the shortest distance

is found and the density is evaluated according to equation (3).

This takes only a small fraction of a second on a desk-top

computer. The map in Fig. 1 used a grid of 200 � 200 points

and took only a few minutes, and the positions of zeros and

maxima are clearly visible. Re®nement of the positions

requires only the location of a few maxima in one or at most

two dimensions. However, it should be noted that the density

maps rapidly become more complicated for higher-index

directions. Fig. 1 also shows a map for h421i cylinders in P4132;

in this case the lines of zero density are barely resolved at 200

� 200 resolution, although the positions of the main maxima

are readily apparent. If one wanted to know the total number

of distinct packings in such cases, it would appear that the best

strategy would be to determine analytically the lines of zero

density (it appears that they are always straight lines) and

analyze their intersections. However, it is clear that there can

be a rather large number of distinct packings and that they are

of rather low density, so we have not pursued this aspect of the

problem.

There are certain fairly obvious restrictions on the possible

symmetry elements compatible with non-zero density pack-

ings. In particular, cylinder axes must not be normal to, or

intersect, pure rotation axes (as opposed to screw axes) of

order greater than two. It follows at once (O'Keeffe et al.,

2001) that as all cubic groups have threefold rotation axes

there are no non-intersecting cylinder packings for hu0v0w0i if

any one of u0 � v0 � w0 = 0, such as h110i, h321i etc. Clearly

also, cylinders cannot intersect mirror planes or intersect glide

planes with the projection of the cylinder axis on that plane

parallel to the glide direction.

3. hhh111iii cylinder packings
For non-intersecting rods, the symmetry restrictions mean that

there are no non-intersecting h111i cylinder packings for space

groups with symbol .m.., .n.., .d.., ...m or ...c (note that P�43n =

P�43c). For h111i packings, body-centering takes a cylinder into

itself, so we can further assert that all such packings are body-

centered, and only 7 of the 36 cubic groups are possible

symmetries (see Table 1). Except at special positions, the

number of cylinders in the unit cell, n in equation (3), is equal

to the order of the point group.

The special positions of x0 and y0 are the same as the special

positions of one of the plane groups (two-dimensional space

groups). The plane group in question is just that of the

projection of the three-dimensional space group on (111). For

example, the projection of Ia�3d is p6mm and the special and

general positions (Wyckoff positions) are: 1(a) (0, 0), 2(b)

(1=3, 2=3), 3(c) (0, 1=2), 6(d) (x, 0), 6(e) (x, �x), 12( f) (x, y).

The number of cylinders, n, is four times the multiplicity of the

Wyckoff position as there are cylinders parallel to [�111], [1�11]

and [11�1], as well as to [111]. In positions c, a cylinder axis

along [111] intersects a threefold axis, so this structure does

not correspond to a non-zero density packing. An inspection

of the possibilities shows that there are just four distinct

(actually six if left- and right-hand enantiomers are distin-

guished) invariant h111i cylinder packings (O'Keeffe et al.,

2001). These are listed in Table 2.

The asymmetric unit for Ia�3d h111i cylinder packings is that

for p6mm, i.e. the triangle with corners x0, y0 = 0, 0 and x0, y0 =

1=2, 0 and x0, y0 = 2=3, 1=3. This is illustrated in Fig. 2, in which

the locations of cylinder packings with a local maximum in

density are indicated. Notice that, in p6mm, the special posi-

tion x, �x belongs to the same set as 2x, x (along the line from

0, 0 to 2=3, 1=3 in the ®gure).

A total of 40 homogeneous h111i cylinder packings were

found; these are listed in Tables 2 and 3 and illustrated in

Table 1
Symmetries of projection (PG = plane groups) of space groups (SG) on
(111).

The seven marked with an asterisk are possible space groups of ®nite-density
h111i cylinder packings. The ®rst set of ®ve rows consists of space groups with
non-intersecting threefold axes. The second set of ®ve has intersecting
threefold axes.

SG PG Others

*Ia�3d p6mm
*I4132 p3m1 P4132, P4332
*I�43d p31m
*Ia�3 p6 Pa�3
*I213 p3 P213
Im�3m p6mm Pm�3m, Pm�3n, Fm�3m, Fm�3c, Pn�3m, Pn�3n, Fd�3m, Fd�3c
*I432 p3m1 P432, P4232, F432, F4132
I�43m p31m P�43m, P�43n, F�43m, F�43c
Im�3 p6 Pm�3, Fm�3, Pn�3, Fd�3
*I23 p3 P23, F23



projection down [111] in Figs. 3, 4, 5 and 6. There were no new

homogeneous packings in I213 or I23 (i.e. all packings found in

these groups actually had higher symmetry). In 18 of these

packings, cylinders are in contact only with cylinders in other

orientations (Table 2). In the other 22 packings, two or more

parallel cylinders (`bundles') are in contact. Packings of

bundles of three or more are given a symbol such as 4±T31,

which means that the individual cylinders of packing number 4

are replaced by the bundle T31, according to O'Keeffe (1992),

whose work may be consulted for illustrations. O'Keeffe

(1992) did not recognize the possibility of bundles of two

cylinders in h111i packings and these are identi®ed in Fig. 6.

The coordinates of non-bundle packings can all be speci®ed

in terms of simple fractions, and they are so listed in Table 2. It

is believed that, other than the invariant packings (O'Keeffe et

al. 2001), these have not been described before, although it is

noted that a large model of number 5 has been in Ogawa's

laboratory (University of Tsukuba) for a number of years.

All these packings are stable in the sense that a particular

cylinder cannot be moved, other than along its axis, without

moving an in®nite number of others. However, it should be

noted that �*, and those with bundles replacing single cylin-

ders of �* (numbers 2, 21, 22 and 34), are composed of two

interpenetrating packings based on +� and ÿ� [the enantio-
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Figure 1
(a) The density as a function of x0 and y0 for h111i cylinder packings with
symmetry Ia�3d. (b) The same for h421i cylinder packings with symmetry
P4132.

Figure 2
(a) The lines of zero density for h111i cylinder packings in Ia�3d (cf. Fig.
1a). (b) The asymmetric unit of (a) with positions of maximum density
indicated by ®lled circles.
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morphs of the SrSi2 packing (cf. O'Keeffe, 1992)] that do not

touch each other. Likewise, structure 8 consists of intergrown

pairs 10a and 10b in which cylinders of one set do not touch

those of the other. Structures 36 and 38 are derived from 8 and

Table 3
The h111i homogeneous cylinder bundle packings.

The ®rst column contains arbitrary numbers. The symbols are described in the
text. Z is the number of cylinders (of length 31/2a) in the unit cell. a is the unit-
cell edge for a packing of unit-diameter cylinders and � is the fraction of space
®lled by the cylinders.

No. Symbol SG x y Z a �

19 1±H61 Ia�3d 0.15849 0 24 7.727 0.54675
20 1ÿH62 Ia�3d 0.08333 ÿx 24 8.485 0.45345
21 2ÿT31 Ia�3d 0.30283 ÿx 24 13.384 0.18225
22 2ÿT32 Ia�3d 0.35566 ÿx 24 18.377 0.09668
23 1±T32 I4132 0.06987 ÿx 12 6.094 0.43951
24 3ÿT31 I4132 0.30283 ÿx 12 13.384 0.09113
25 3ÿT32 I4132 0.35566 ÿx 12 18.377 0.04834
26 4±T32 I432 0.28868 ÿx 12 9.142 0.19534
27 4±T31 I432 0.39434 ÿx 12 6.692 0.36450
28 1ÿH3 I�43d 0.12500 0 12 5.657 0.51013
29 1ÿH12 Ia�3d 0.19717 0.05283 48 13.384 0.36449
30 2ÿT6 Ia�3d 0.61383 0.28050 48 23.182 0.12150
31 3ÿT6 I4132 0.61383 0.28050 24 23.182 0.06075
32 4±T6 I432 0.56100 0.22767 24 11.591 0.24300
33 Ia�3d 0.27863 0.11452 48 24.699 0.10704
34 Ia�3d 0.35000 0.05000 48 14.142 0.32648
35 Ia�3d 0.38977 0.16931 48 23.940 0.11393
36 Ia�3d 0.57427 0.21286 48 19.042 0.18009
37 I4132 0.30283 0.10566 24 13.384 0.18225
38 I4132 0.57427 0.21286 24 19.042 0.09005
39 I432 0.42573 0.14854 24 9.521 0.36019
40 I�43d 0.35000 0.05000 24 14.142 0.16324

Figure 4
h111i cylinder packings viewed down [111]: (a)±(h) numbers 5±12,
respectively. A hexagonal unit cell is outlined.

Table 2
The invariant (numbers 1 to 4) and non-bundle h111i homogeneous
cylinder packings.

The ®rst column contains arbitrary numbers and the symbols are those of
O'Keeffe et al. (2001). Z is the number of cylinders (of length 31/2a) in the unit
cell. a is the unit-cell edge for a packing of unit-diameter cylinders and � is the
fraction of space ®lled by the cylinders. Structures labelled a and b are
enantiomers.

No. Symbol SG x y Z a �

1 ÿ Ia�3d 0 0 4 2(21/2) 31/2�/8
2 �* Ia�3d 2/3 1/3 8 6(21/2) 31/2�/36
3a +� I4132 1/3 2/3 4 6(21/2) 31/2�/72
3b ±� I4132 2/3 1/3 4 6(21/2) 31/2�/72
4a +
 I432 1/3 2/3 4 3(21/2) 31/2�/18
4b ±
 I432 2/3 1/3 4 3(21/2) 31/2�/18
5 Ia�3d 1/3 0 24 6(21/2) �/4(31/2)
6 Ia�3d 1/7 6/7 24 14(21/2) 3(31/2)�/196
7 Ia�3d 1/5 4/5 24 10(21/2) 3(31/2)�/100
8 Ia�3d 2/5 3/5 24 10(21/2) 3(31/2)�/100
9a I4132 1/6 5/6 12 6(21/2) �/8(31/2)
9b I4132 1/6 5/6 12 6(21/2) �/8(31/2)
10a I4132 2/5 3/5 12 10(21/2) 3(31/2)�/200
10b I4132 3/5 2/5 12 10(21/2) 3(31/2)�/200
11a I432 1/5 4/5 12 5/(21/2) 3(31/2)�/50
11b I432 4/5 1/5 12 5/(21/2) 3(31/2)�/50
12 I�43d 1/3 0 12 6(21/2) �/8(31/2)
13 Ia�3d 1/3 1/9 48 18(21/2) �/18(31/2)
14 Ia�3d 3/7 1/7 48 14(21/2) 3(31/2)�/98
15 I�43d 1/3 1/9 24 18(21/2) �/36(31/2)
16 I�43d 3/7 1/7 24 14(21/2) 3(31/2)�/196
17 Ia�3 1/3 1/9 24 18(21/2) �/36(31/2)
18 Ia�3 3/7 1/7 24 14(21/2) 3(31/2)�/196

Figure 3
h111i cylinder packings viewed down [111]: (a)±(d) numbers 1±4,
respectively. A hexagonal unit cell is outlined.



10 by replacing each cylinder by a bundle of two cylinders, so

36 is similarly obtained to two interpenetrating enantiomorphs

of 38.

4. hhh100iii cylinder packings
The enumeration of these cylinder packings proceeds simi-

larly. Special and general positions are identi®ed from the

plane group of the projection of the space group on (100). A

small complication, which must be taken into account, is the

displacement of the origin of the plane group from that of the

space group (using the conventional choice of origin) as

indicated in Table 4. For example, for symmetry Pm�3m, the

special positions are those of p4mm: 1(a) (0, 0); 1(b)

(1=2, 1=2); 2(c) (0, 1=2), (1=2, 0). The cylinder axes corre-

sponding to these positions are (a) 0, 0, u; u, 0, 0; 0, u, 0; (b)

1=2, 1=2, u; u, 1=2, 1=2; 1=2, u, 1=2; (c) 0, 1=2, u; 1=2, 0, u;

u, 0, 1=2; u, 1=2, 0; 1=2, u, 0; 0, u, 1=2. In each case, the

cylinder axes intersect. We note in passing that case (c)

corresponds to the well known NbO net (O'Keeffe & Hyde,

1996). For space group Pm�3n, the origin is shifted by 0, 1=2 so

the cylinder axes become (a) 1=2, 0, u; u, 1=2, 0; 0, u, 1=2 and

(b) 0, 1=2, u; u, 0, 1=2; 1=2, u, 0. Both of these correspond to

the invariant packing �* displaced one from the other by

1=2, 1=2. Positions (c) again correspond to the NbO net.

We found the two known invariant packings (O'Keeffe et

al., 2001) and three other non-bundle packings (numbers 3, 4

and 5, Table 5), which again we believe have not been

published before, although we remark that number 4

(`knight's move') was long known to Ogawa's group. All

packings except those with bundles of four or more (identi®ed

in Table 6) are illustrated in Figs. 7 and 8.
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Table 4
Symmetries of projection (PG = plane groups) of space groups (SG) on
(100).

The seven marked with an asterisk are possible space groups of ®nite density
h100i cylinder packings.

SG PG Origin Others

Im�3m c4mm 0, 0 I�43m, I432, Pn�3m, Pn�3n, Fd�3c, Fd�3m
Pm�3m p4mm 0, 0 P�43m, P432, Fm�3m, Fm�3c, F�43c, F�43m,

F432, Pn�3m, Pn�3n
*Pm�3n p4mm 1/2, 0 P�43n, P4232, Ia�3d, F4132
*I�43d c4gm 0, 1/4
*I4132 c4mm 1/4, 0
*P4132 p4gm 1/4, 0
Im�3 c2mm 0, 0 I23, Pn�3, Fd�3
Pa�3 p2gm 0, 0
*Pm�3 p2mm 0, 0 P23, Fm�3, F23, Ia�3
*I213 c2mm 1/4, 0
*P213 p2gg 1/4, 0

Figure 6
h111i cylinder packings, with bundles of two, viewed down [111]: (a)±(h)
numbers 33±40, respectively. A hexagonal unit cell is outlined.

Figure 5
h111i cylinder packings viewed down [111]: (a)±( f ) numbers 13±18,
respectively. A hexagonal unit cell is outlined.
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The h100i packing number 15 is only metastable as any one

cylinder can be displaced normal to its axis without displace-

ment of any others.

5. 6-way, 12-way and 24-way cylinder packings

Cubic cylinder packings are also possible for any axes huvwi
for which u� v� w 6� 0. In the general case, there are no ®nite

density packings that correspond to special positions. 6-way

packings are possible for huv0i with u 6� v and classes 23 and

m�3 (only Pn�3 and Fd�3). We have identi®ed some with rela-

tively high density in the case of h210i. As our reference

cylinder must intersect the plane z = 0, the reference direction

is actually [201] and the cylinder axes are [201], [20�1], [120],

[�120], [012], [0�12]. Fig. 9 shows perhaps the simplest and

highest density: that with symmetry P23 in Table 7.

Again with huv0i there are 12-way packings for groups of

class 432 for which the fourfold axes are screw axes (P4132,

P4232, P4332, F4132 and I4132). A particularly pleasing one

Table 5
The invariant (numbers 1 and 2) and non-bundle h100i cylinder packings.

The ®rst column contains arbitrary numbers and the symbols are those of
O'Keeffe et al. (2001). Z is the number of cylinders (of length a) in the unit
cell. a is the unit-cell edge for a packing of unit-diameter cylinders and � is the
fraction of space ®lled by the cylinders.

No. Symbol SG x y Z a �

1 �* Pm�3n 1/2 0 3 2 3�/16
2a +� I4132 1/4 0 6 4 3�/32
2b ÿ� I4132 3/4 0 6 4 3�/32
3 I4132 2/3 0 12 6 �/12
4 I4132 1/12 0 24 12 �/24
5 I�43d 1/12 0 24 12 �/24

Figure 7
h100i cylinder packings viewed down [100]: (a) number 1, (b) number 18,
(c) number 11, (d) number 15, (e) number 2, ( f ) number 19, (g) number
17. A unit cell is outlined.

Table 6
The h100i homogeneous cylinder bundle packings.

The ®rst column contains arbitrary numbers. The symbols are described in the
text. Z is the number of cylinders (of length a) in the unit cell. a is the unit-cell
edge for a packing of unit-diameter cylinders and � is the fraction of space
®lled by the cylinders.

No. Symbol SG x y Z a �

6 1±S42 Pm�3n 0.35355 0 12 4.840 0.40226
7 1±S41 Pm�3n 0.125 1/2 ÿ x 12 4.000 0.58905
8 Pm�3n 0.18750 0.06250 24 8.000 0.29452
9 1±S8 Pm�3n 0.32322 0.07322 24 6.828 0.40426

10 2±S42 I4132 0.17678 0 24 9.657 0.20213
11 1±S2 I4132 0.05178 1/4 ÿ x 24 6.828 0.40426
12 2±S41 I4132 0.18750 1/4 ÿ x 24 8.000 0.29452
13 4±S2 I4132 0.09375 0.03125 48 16.000 0.14726
14 2±S8 I4132 0.16161 0.03661 48 13.657 0.20213
15 I�43d 0.18750 0 24 8.000 0.29452
16 5±S2 I�43d 0.09375 0.03125 48 16.000 0.14726
17 2±S2 P4132 0.18922 1/4 + x 12 6.828 0.20213
18 Pm�3 0.33333 0 6 3.000 0.52360
19 I213 0.16667 0 12 6.000 0.26180

Figure 8
h100i cylinder packings viewed down [100]: (a) number 3, (b) number 8,
(c) number 4, (d) number 13, (e) number 5, ( f ) number 16. A unit cell is
outlined.



with relatively high density was found with symmetry P4232

(Fig. 10). Although the packing density is quite high, there are

large channels through the structure with the arrangement of

the �* h100i packing (see the ®gure) and if these channels are

®lled with a second set of cylinders of maximum diameter, the

combined density of the two packings is 0.692.

For 24-way packings u0, v0 and w0 must all be non-zero and

different and the symmetry must be octahedral (in fact only

class 432 for ®nite density). The simplest case is h421i (h321i
cylinder axes always intersect with cubic symmetry) and the

directions are all permutations of [421], [42�1], [4�21] and [�421]).

These are generally of low density and dif®cult to illustrate

satisfactorily, and we are content to list the three of highest

density that we have identi®ed in Table 7.

APPENDIX A
The distance between cylinder axes

As explained in the text, we specify a cylinder axis by giving

the coordinates x, y, z of a point on the axis and its direction

[uvw]. For a cubic structure with cell edge a, the shortest

distance, d, between two axes x1, y1, z1 [u1v1w1] and x2, y2, z2

[u2v2w2] is computed as follows.
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Figure 10
h201i cylinder packing with symmetry P4232: (a) viewed down [100], (b)
viewed down [120].

Table 7
Some N-way homogeneous huvwi cylinder packings.

a is the unit-cell edge for a packing of unit-diameter cylinders and � is the
fraction of space ®lled by the cylinders.

N uvw SG x y a �

6 201 P23 0 0.16667 9.165 0.25089
6 201 P213 0.12500 0.08333 12.220 0.14112
6 201 Pn�3 0.25000 0.18750 14.664 0.19600

12 201 P4132 0.12500 0.44892 16.568 0.15354
12 201 P4232 0 0.19361 10.932 0.35267
24 421 P432 0.86581 0.06062 43.490 0.04567
24 421 P4132 0.56085 0.21651 41.809 0.04942
24 421 P4232 0.24028 0.52642 47.129 0.03889

Figure 9
h201i cylinder packing with symmetry P23: (a) viewed down [100], (b)
viewed down [120].
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Let

c1 � u1�x1 ÿ x2� � v1�y1 ÿ y2� � w1�z1 ÿ z2�;
c2 � u2�x1 ÿ x2� � v2�y1 ÿ y2� � w2�z1 ÿ z2�;

b1 � u2
1 � v2

1 � w2
1;

b2 � u2
2 � v2

2 � w2
2;

b12 � u1u2 � v1v2 � w1w2:

For parallel axes,

b1 � b2 � b12

and

r1 � 0;

r2 � ÿc2=b2;

otherwise

r1 � �c1b12 ÿ c2b1�=�b1b2 ÿ b2
12�;

r2 � ÿ�c2b12 ÿ c1b2�=�b1b2 ÿ b2
12�:

Then

�d=a�2 � �x1 � u1r1 ÿ x2 ÿ u2r2�2 � �y1 � v1r1 ÿ y2 ÿ v2r2�2
� �z1 � w1r1 ÿ z2 ÿ w2r2�2:

The shortest distance from a point x1, y1, z1 to the axis

x2, y2, z2 [u2v2w2] is the same as between the parallel axes

x1, y1, z1 [u2v2w2] and x2, y2, z2 [u2v2w2].

The coordinates of the point of contact between two equal

non-parallel cylinders are

x � �x1 � u1r1 � x2 � u2r2�=2;

y � �y1 � v1r1 � y2 � v2r2�=2;

z � �z1 � w1r1 � z2 � w2r2�=2:
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